3.236 \(\int \sec ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=76 \[ \frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f}+\frac{(a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 \sqrt{b} f} \]

[Out]

((a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*Sqrt[b]*f) + (Tan[e + f*x]*Sqrt[a
+ b + b*Tan[e + f*x]^2])/(2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0814039, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {4146, 195, 217, 206} \[ \frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f}+\frac{(a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 \sqrt{b} f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

((a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*Sqrt[b]*f) + (Tan[e + f*x]*Sqrt[a
+ b + b*Tan[e + f*x]^2])/(2*f)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sec ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \sqrt{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac{\tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 f}\\ &=\frac{(a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 \sqrt{b} f}+\frac{\tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}\\ \end{align*}

Mathematica [B]  time = 1.66582, size = 210, normalized size = 2.76 \[ \frac{\tan (e+f x) \sqrt{-a \sin ^2(e+f x)+a+b} \sqrt{a+b \sec ^2(e+f x)} \left (\sqrt{\frac{b \sin ^2(e+f x)}{a+b}} (a \cos (2 (e+f x))+a+2 b)+\sqrt{2} (a+b) \cos ^2(e+f x) \sqrt{\frac{a \cos (2 (e+f x))+a+2 b}{a+b}} \tanh ^{-1}\left (\frac{\sqrt{\frac{b \sin ^2(e+f x)}{a+b}}}{\sqrt{\frac{-a \sin ^2(e+f x)+a+b}{a+b}}}\right )\right )}{\sqrt{2} f \sqrt{\frac{b \sin ^2(e+f x)}{a+b}} (a \cos (2 (e+f x))+a+2 b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(Sqrt[a + b*Sec[e + f*x]^2]*Sqrt[a + b - a*Sin[e + f*x]^2]*(Sqrt[2]*(a + b)*ArcTanh[Sqrt[(b*Sin[e + f*x]^2)/(a
 + b)]/Sqrt[(a + b - a*Sin[e + f*x]^2)/(a + b)]]*Cos[e + f*x]^2*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/(a + b)] +
 (a + 2*b + a*Cos[2*(e + f*x)])*Sqrt[(b*Sin[e + f*x]^2)/(a + b)])*Tan[e + f*x])/(Sqrt[2]*f*(a + 2*b + a*Cos[2*
(e + f*x)])^(3/2)*Sqrt[(b*Sin[e + f*x]^2)/(a + b)])

________________________________________________________________________________________

Maple [C]  time = 0.304, size = 1098, normalized size = 14.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/2/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*sin(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)*(2*sin(f*x+e)
*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))
^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*Ellipti
cPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*
I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a+2*sin(f*x+e)*cos(f*x+e)^2*2^(1/
2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I
*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))
*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a
+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b-sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*
x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b
^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)
+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a-sin(
f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*
x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*E
llipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)
*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b+cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a-cos(f*x+e)^2*
((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a+cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b-((2*I*a^(1/2)*b
^(1/2)+a-b)/(a+b))^(1/2)*b)/(-1+cos(f*x+e))/(b+a*cos(f*x+e)^2)/cos(f*x+e)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.703574, size = 813, normalized size = 10.7 \begin{align*} \left [\frac{{\left (a + b\right )} \sqrt{b} \cos \left (f x + e\right ) \log \left (\frac{{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \,{\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \,{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt{b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) + 4 \, b \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{8 \, b f \cos \left (f x + e\right )}, \frac{{\left (a + b\right )} \sqrt{-b} \arctan \left (-\frac{{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt{-b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \,{\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right ) + 2 \, b \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{4 \, b f \cos \left (f x + e\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/8*((a + b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*
((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) +
 8*b^2)/cos(f*x + e)^4) + 4*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b*f*cos(f*x + e)), 1/
4*((a + b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 +
b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) + 2*b*sqrt((a*cos(f*x + e)^2 + b)/c
os(f*x + e)^2)*sin(f*x + e))/(b*f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sec ^{2}{\left (e + f x \right )}} \sec ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**2*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*sec(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sec(f*x + e)^2, x)